|
Eye color or eye colour is a polygenic phenotypic character determined by two distinct factors: the pigmentation of the eye's iris and the frequency-dependence of the scattering of light by the turbid medium in the stroma of the iris. In humans, the pigmentation of the iris varies from light brown to black, depending on the concentration of melanin in the iris pigment epithelium (located on the back of the iris), the melanin content within the iris stroma (located at the front of the iris), and the cellular density of the stroma. The appearance of blue and green, as well as hazel eyes, results from the Tyndall scattering of light in the stroma, a phenomenon similar to that which accounts for the blueness of the sky called Rayleigh scattering.〔Sturm R.A. & Larsson M., Genetics of human iris colour and patterns, Pigment Cell Melanoma Res, 22:544-562, 2009.〕 Neither blue nor green pigments are ever present in the human iris or ocular fluid.〔 Eye color is thus an instance of structural color and varies depending on the lighting conditions, especially for lighter-colored eyes. The brightly colored eyes of many bird species result from the presence of other pigments, such as pteridines, purines, and carotenoids. Humans and other animals have many phenotypic variations in eye color.〔Morris, PJ. ("Phenotypes and Genotypes for human eye colors." ) Athro Limited website. Retrieved 10 May 2006.〕 The genetics of eye color are complicated, and color is determined by multiple genes. So far, as many as 15 genes have been associated with eye color inheritance. Some of the eye-color genes include ''OCA2'' and ''HERC2''.〔("Genotype–phenotype associations and human eye color" ), ''Journal of Human Genetics'' January 2011. 〕 The earlier belief that blue eye color is a simple recessive trait has been shown to be incorrect. The genetics of eye color are so complex that almost any parent-child combination of eye colors can occur.〔(No Single Gene For Eye Color, Researchers Prove ). Sciencedaily.com (22 February 2007). Retrieved on 2011-12-23.〕 However, OCA2 gene polymorphism, close to proximal 5′ regulatory region, explains most human eye-color variation. ==Genetic determination== Eye color is an inherited trait influenced by more than one gene. These genes are sought using associations to small changes in the genes themselves and in neighboring genes. These changes are known as single-nucleotide polymorphisms or SNPs. The actual number of genes that contribute to eye color is currently unknown, but there are a few likely candidates. A study in Rotterdam (2009) found that it was possible to predict eye color with more than 90% accuracy for brown and blue using just six SNPs.〔("DNA test for eye colour could help fight crime" ), ''New Scientist'' 14 March 2009. 〕 There is evidence that as many as 16 different genes could be responsible for eye color in humans; however, the main two genes associated with eye color variation are ''OCA2'' and ''HERC2'', and both are localized in Chromosome 15.〔 The gene ''OCA2'' (), when in a variant form, causes the pink eye color and hypopigmentation common in human albinism. (The name of the gene is derived from the disorder it causes, oculocutaneous albinism type II.) Different SNPs within ''OCA2'' are strongly associated with blue and green eyes as well as variations in freckling, mole counts, hair and skin tone. The polymorphisms may be in an ''OCA2'' regulatory sequence, where they may influence the expression of the gene product, which in turn affects pigmentation.〔 A specific mutation within the ''HERC2'' gene, a gene that regulates ''OCA2'' expression, is partly responsible for blue eyes. Other genes implicated in eye color variation are ''SLC24A4'' and ''TYR''.〔 Blue eyes with a brown spot, green eyes, and gray eyes are caused by an entirely different part of the genome. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「eye color」の詳細全文を読む スポンサード リンク
|